

The Team

Ames Research Center

- Jim Arnold
- Alan Covington
- David Kinney
- Kathy McGuire

Johnson Space Center

- Eduardo García Llama
- Ron Sostaric
- Carlie Zumwalt

Langley Research Center

- Alicia Cianciolo
- Jody Davis
- Walt Engelund
- D. R. Komar
- Shawn Kirzan
- Jeff Murch
- Aaron Olds
- Dick Powell
- Eric Queen
- Jamshid Samareh
- Jeremy Shidner
- David Way
- Tom Zang

Mars Design Reference Architecture (DRA5) - 2008

- Objective: To determine minimum required technologies to develop credible AEDL concept that would safely land 40 MT
- Baseline Mission: Rigid body (Ellipsled) concept (highest TRL of the candidates) and Supersonic Retropropulsion
 - Eliminated parachutes (too large to be credible)
 - Eliminated inflatables, rigid deployables, etc. (too low TRL, insufficient models)
 - Selected dual-pulse TPS
 - Selected Supersonic Retro Propulsion (note low TRL because of controllability concerns, but deemed best credible solution)
 - Trajectory simulation included low fidelity models
 - Resulted in 110 mt arrival mass

EDL-SA: Exploration Class - 2009

EDL-SA

Open the design space to include additional low TRL solutions

- Performed more detailed analysis of the DRA 5 solution
- Identified potential alternate technology paths try to have multiple paths through the technology space
- Used data from previous studies as a starting point (e.g. used MIAS study (HIAD with ablator TPS) to develop alternative to rigid body)
- Decided to investigate SIAD with subsonic retropropulsion as alternative to supersonic retropropulsion
- Recognized that many potential credible solutions were not examined (e.g. rigid deployables)

EDL-SA: Exploration Class – 2009, cont. EDL-SA

- EDL-SA Exploration Class Study considered combinations of technologies required to land humans on Mars with
 - Undefined 40 mt Payload
 - HIAD ablator TPS
 - Bank angle control
- After Exploration Class External Peer Review
 - Suggested to consider insulator TPS for Entry and Aerocapture HIADS to compare the mass saving over ablator TPS
 - Suggested that that bank control may not be feasible for large HIADS, so considered CG control

EDL-SA: Exploration Class, cont.

EDL-SA

Conclusions of Exploration Class Analysis

- DRA 5 concept still viable
 - Limited testing of dual pulse TPS showed promising results
- Replacing SRP with SIAD and subsonic retropropulsion not a good trade
 - No credible alternative to SRP identified
- HIAD's offered potential for large arrival mass reductions
- Rigid aeroshells, SRPs and HIADs with ablator TPS were recommended for technology development

Transition to Exploration Feed Forward (EFF)

- Testing of HIAD insulator TPS material showed promising results
- Controllability of concept with HIAD remained major concern
- Updated packaging analysis of DRA 5 aeroshell configuration showed that internal volume was oversized – vehicle could be reduced in size and thus arrival mass should be reduced
- Recognized that rigid deployables should be added to candidate technology list
- Decision to split EDL-SA 50/50 with MSL-I limited resources to a single concept (with trades) to carry forward – selected HIAD for aerocapture and EDL

EFF Evolution

- Extended Arch 9 to assess the next level of design detail using
 - Arrival mass limited to capability of Delta IV-Heavy
 - 2 mt specified Payload (Nuclear Power Plant)
 - Separate HIADS for Aerocapture and Entry
 - HIAD Insulator TPS
 - HIAD controller options CG, Bank and Combination
 - ALHAT sensor models
 - Supersonic Retro-propulsion (switched from LOX to Hydrazine for Year 2)

To determine if technologies identified in Exploration Class analysis can be combined in a precursor mission to successfully land a payload of <a>2.5 mt

- 1. Determine the maximum payload delivery capability of a Delta IV-H
- 2. Increase the level of fidelity of all models
- 3. Determine required performance of supersonic retropropulsion
- 4. Determine optimal materials, L/D and HIAD size for aerocapture and entry
- 5. Determine if cg control provides benefits over bank control
- 6. Determine sensor performance for an ALHAT system at Mars

Results: Obj. 1 - Optimal Mass

EDL-SA

Results: Obj. 2 - Increase Model Fidelity EDL-SA

2. Perform the next level of detail on packaging, mass properties, transitions, structures, propulsion, etc

3. Determine the required performance of supersonic retropropulsion system – Complete

RS-72 Pump Fed NTO/MMH throttleable engines, lsp = 338 s, area ratio = 300,

1.4 > Mach at SRP initiation > 1.8

3 km >Altitude at SRP initiation > 8 km

4. Determine optimum material/TPS, L/D, and size of the HIAD for aerocapture and entry – Complete

			Dual HIAD		Single HIAD		Direct Entry, 7.2 km/:Direct Entry, 5.8 km/:			
	Units		Ablator	Insulator	Ablator	Insulator	Ablator	Insulator	Ablator	Insulator
Payload	kg		2627	2371	2881	2589	3294	2953	3442	3584
Diameter	m		8	14	8	14	8	16	8	8

HIAD Controllability examined L/D from 0.1 to 0.25.

5. Determine if active cg control provides benefits over the use of bank only – Incomplete

Results: Obj. 6 – ALHAT Performance

EDL-SA

6. Determine the sensor performance ranges for an ALHAT like navigation & sensor system at Mars - Complete

TRN

Expected states and ranges

Altitude: 2 – 7 km

Velocity: Mach 0.5 – 1.7

Altimeter

Activated at 6 km

Velocimeter

Activated at 2 km and 150 m/s

HDA

Current trajectory nominal HDA flight condition

- Altitude = 1 km
- Look angle = -14 deg
- Path angle = 66 deg

Error	Engine Initiation IMU & Star Tracker Updates	Altimeter Update at 6 km	3 TRN Updates b/w 2-7 km	Velocimeter Update at 2 km
Position	4.0 km	2.8 km	125 m	
Velocity	3.0 m/s	3.0 m/s		17 cm/s
Altitude	3.4 km	11 m		

EFF Technology Recommendations

- Continue evaluation of ALHAT sensors adapted to Mars
- Continue development supersonic retropropulsion
- Include rigid body precursor configuration
- Continue to mature HIADS
- Include rigid deployables in design space
- Perform detailed evaluation of transitions
- Invest in advancements in flight instrumentation